 $\left[\mathrm{OC}\left(\mathrm{NH}_{2}\right) \mathrm{NHNH}_{2}\right] \mathrm{ZnCl}_{2},{ }^{26} 2.179$ (7) and 2.206 (7) \AA in $\left[\mathrm{Zn}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)_{3}\right]\left[\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right]_{n}$, ${ }^{27}$ and 2.099 (4) in $\mathrm{Zn}\left[\mathrm{C}_{7} \mathrm{H}_{6}-\right.$ $\left.\mathrm{N}_{2} \mathrm{O}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} .{ }^{28}$

All three ethylenediamine chelate rings have the gauche configuration with the angles between the planes $\operatorname{CCN}(1)$ and N (primary) CC respectively $37.5,33.4$, and 43.6°, and all have the k conformation as in the case of $\mathrm{Cu}($ tren $)(\mathrm{NCS})_{2}{ }^{5}$ and of the isomorphous series $\mathrm{M}\left(\mathrm{Me}_{6}-\right.$ tren) $\mathrm{Br}_{2} .{ }^{9}$ The asymmetry of the ethylenediamine moiety with respect to the coordination plane can most conveniently be expressed by the angle between the coordination plane defined by the metal atom and the two nitrogen atoms and the plane defined by the two nitrogen atoms and the midpoint of the carbon-carbon bond. These angles are $3.2,3.4$, and 4.9° for $\mathrm{N}(2)$, $N(3)$, and $N(4)$ chelate rings, respectively. The corresponding values in $\mathrm{Cu}($ tren $)(\mathrm{NCS})_{2}{ }^{5}$ are $5.6,-0.6$, and 7.3°, in $\mathrm{Ni}($ tren $)(\mathrm{NCS})_{2}{ }^{2} 15.6,25.5$, and 19.3°, and 8.3° in $\mathrm{Co}\left(\mathrm{Me}_{6}\right.$ tren $) \mathrm{Br}_{2} .^{7}$ The observed differences between lengths of chemically identical bonds in the tren molecule are possibly significant (maximum difference, 4.5σ), but we can suggest no explanation for these small differences.

The $\mathrm{Zn}-\mathrm{N}-\mathrm{C}$ (thiocyanate) angle is 166.6° and agrees with the values reported in the literature: 161.2° in $\mathrm{Zn}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)_{2}(\mathrm{NCS})_{2},{ }^{27} \quad 163.3^{\circ}$ in $\mathrm{Cu}($ tren $)(\mathrm{NCS})_{2} .{ }^{5}$ In Table III are compared bond distances and angles of the thiocyanate groups found in the present work and in $\mathrm{Cu}($ tren $)(\mathrm{NCS})_{2}, 5$ The C-S distances in the thiocyanate groups have been corrected for anisotropic
(25) A. Ferrari, A. Braibanti, G. Bigliardi, and A. Lanfredi, Acta Cryst., 18, 367 (1965).
(26) M. Nardelli, G. Gasparri, P. Boldrini, and G. Battistini, ibid., 19, 491 (1965).
(27) A. Ferrari, A. Braibanti, G. Bigliardi, and A. Lanfredi, ibid., 19, 548 (1965).
(28) G. Palenik, ibid., 17, 696 (1964).

Table III. Bond Lengths in Thiocyanate

		$\mathrm{Zn}($ tren $)$	$\mathrm{Cu}($ tren $)$
$\mathrm{C}-\mathrm{S}, \AA$	Bonded	$1.628(5)[1.644]$	$1.612(5)$
$\mathrm{N}-\mathrm{C}, \AA$	Unbonded	$1.561(8)[1.625]$	$1.624(5)$
	Bonded	$1.135(7)$	$1.142(7)$
$\mathrm{N}-\mathrm{C}-\mathrm{S}, \mathrm{deg}$	Unbonded	$1.140(12)$	$1.168(7)$
	Bonded	$178.5(0.5)$	$177.4(0.5)$
	Unbonded	$176.1(0.8)$	$178.4(0.5)$

thermal vibration effects assuming the S atom riding on the carbon atom, and the values are reported in brackets. As in the case of $\mathrm{Cu}(\mathrm{tren})(\mathrm{NCS})_{2}$ the bond distances within the two thiocyanate ions are not significantly different, even though one is bonded to zinc and the other is unbonded and their infrared spectra are clearly different. ${ }^{1}$

A comparison of the general arrangement of the ions in $\mathrm{Zn}($ tren $)(\mathrm{NCS})_{2}$ and in $\mathrm{Cu}($ tren $)(\mathrm{NCS})_{2}$ and the hydrogen-bond network are shown in Figure 1. A list of short contacts, some of which can be considered as hydrogen bonds, is reported in Table IV. In brackets are given the $\mathrm{H}-\mathrm{N} \cdots$ atom angles.

Table IV. Short Contact Distances (\AA)

$\mathrm{N}(2)-\mathrm{S}(2)$	3.604	$[16.5]^{e}$
$\mathrm{~N}(2)-\mathrm{S}(1)^{a}$	3.538	$[61.6]$
$\mathrm{N}(3)-\mathrm{N}(6)^{b}$	2.962	$[11.8]$
$\mathrm{N}(3)-\mathbf{S}(2)^{c}$	3.432	$[35.5]$
$\mathrm{N}(4)-\mathrm{S}(1)^{d}$	3.646	$[13.7]$
$\mathrm{N}(4)-\mathrm{N}(6)$	3.091	$[56.4]$
${ }^{a} x+1 / 2, y, 1 / 2-z$.	${ }^{b} x, 1 / 2-y, 1 / 2+z$.	${ }^{c} x-1 / 2,1 / 2-y, z$.
$d x, 1 / 2-y, z-1 / 2$.	$\cdot \mathrm{H}-\mathrm{N} \cdots$ atom angles in degrees.	

Acknowledgment. This work was supported in part by the National Science Foundation under Research Grants GP-4446 and GP-5795.

Topological Representation of Stereoisomerism. II. The Five-Atom Family ${ }^{1}$

E. L. Muetterties
Contribution from Frick Chemical Laboratory, Princeton University, Princeton, New Jersey 08650. Received January 18, 1969

Abstract

Polytopal ${ }^{1}$ rearrangements for the five-atom family are compared by topological or matrix presentation to delineate mechanistic differences subject to experimental test in molecular species.

Stereoisomerization through polytopal ${ }^{1}$ rearrangements is examined here on a topological basis in an attempt to identify substantive mechanistic differences for experimental tests. The topological approach and definitions were presented in the first paper of this series ${ }^{1}$ and a later note. ${ }^{2}$ The following discussion is limited to the five-atom family which includes five-coordinate complexes, polyhedral boranes, and metal clusters. Polytopal isomerism in this family has been extensively

[^0]described in the literature, and there are pertinent general articles ${ }^{3,4}$ and reviews. ${ }^{5-7}$

Polytopal Isomerism

The mechanism of intramolecular rearrangements has been generally discussed in terms of the Berry ${ }^{3}$
(3) S. Berry, J. Chem. Phys., 32, 923 (1960).
(4) E. L. Muetterties, Inorg. Chem., 6, 635 (1967); 4, 769 (1965).
${ }^{(5)}$ E. L. Muetterties and R. A. Schunn, Quart. Rev. (London), 20, 245 (1966).
(6) F. W. Westheimer, Accounts Chem. Res., 1, 70 (1968).
(7) E. L. Muetterties and W. H. Knoth, "Polyhedral Boranes," Marcel Dekker, Inc., New York, N. Y., 1968, Chapter III.

Figure 1. Possible intramolecular (polytopal ${ }^{1}$) rearrangements for a trigonal bipyramid.
mechanism, ${ }^{8}$ outlined as process 1 in Figure 1. This rearrangement comprises traverse of trigonal-bipyramidal and square-pyramidal forms. Alternatives have not been seriously considered with but few exceptions. ${ }^{9.910}$ Five alternative mechanisms will be considered here for the general and special ML_{5} or M_{5} cases in the context of stereoisomerization in a reference trigonal-bipyramidal form. These alternatives are schematically represented in Figure 1. The six processes are: (1) the Berry mechanism, $\mathrm{D}_{3 \mathrm{~h}}-\mathrm{C}_{4 \mathrm{v}}$; (2) permutation of one axial and one equatorial positionsC_{s} or C_{1} intermediate; (3) permutation of two equatorial positions (concerted) $-\mathrm{C}_{2 \mathrm{v}}$ transition state; (4) a twist permuting one axial and two equatorial posi-tions- C_{s} or C_{1} intermediate; (5) coplanar pentagonal intermediate; (6) a twist permuting two axial and one equatorial positions- C_{1} intermediate.
Processes 3 and 5 involve coplanar intermediates or transition states which unequivocally should be the highest energy states for most molecular species in the five-atom family. The most symmetrical process and the one that appears to involve the minimal change in

[^1]shape parameters is process 1 . However, if ligand atoms differ significantly in size, then processes such as 2,4 , or 6 may effectively compete with 1 .

As in paper $I,{ }^{1}$ the general case is hypothetical and is defined as an ML_{x} or M_{x} aggregate with identical vertex atoms which are distinguishable by labeling. Isomer notations follow the earlier procedure ${ }^{1}$ of specifying the axial substituents by numbers or letters and enantiomer notations as 12 and 12 .

General Case: ML_{5} or \mathbf{M}_{5}

The trigonal-bipyramidal set of isomers for the general case numbers 20 , and these are related by a group of permutations that are even-odd. Hence, set closure requires a polytopal rearrangement of such transpositional character. ${ }^{2}$ For the processes of Figure 1, graph analysis established the stereochemical matrices (Tables I-III) and the group elements outlined below. Element definitions ${ }^{1}$ are: c_{E} the minimal chain for A to $\overline{\mathrm{A}}$ traverse, $\mathfrak{C}_{\mathrm{E}}$ the minimal cycle for A to $\overline{\mathrm{A}}$ to A traverse, and subcycles, C, A to A circuits not passing through $\overline{\mathrm{A}}$. The tables are symmetrical about the diagonal, and the number entries represent the minimum number of steps required for traverse from an isomer in the vertical column to one in the horizontal column.
Process 1. (1) The class is closed, $I_{\mathrm{A}} \delta_{\mathrm{A}}=I_{\mathrm{B}} \delta_{\mathrm{B}}$ ($20 \times 3=30 \times 2$), where I is the number of isomers and δ is the isomer connectivity. ${ }^{1}$ Process permutations are even-odd. (2) c_{E} is of order five (12-fold degeneracy), $\mathbb{C}_{⿷}$ is ten, and the one subcycle, C, is of order six.

Process 2. (1) The class is open ($I_{\mathrm{A}} \delta_{\mathrm{A}}=20 \times 6$ and $I_{\mathrm{B}} \delta_{\mathrm{B}}=120 \times 2$) but is closed for the trigonal-bipyramidal set (even-odd permutations). (2) c_{E} is of order three (20 -fold degeneracy), C_{E} is six, and there are subcycles of order four (alternating chirality) and of order five.

Process 3. (1) The class is open ($I_{\mathrm{A}} \delta_{\mathrm{A}}=20 \times 3$ and $I_{\mathrm{B}} \delta_{\mathrm{B}}=60 \times 2$). (2) c_{E} is first order and this is the only element of the stereochemical class.
Process 4. (1) The class is open $\left(I_{\mathrm{A}} \delta_{\mathrm{A}}=20 \times 6\right.$ and $I_{\mathrm{B}} \delta_{\mathrm{B}}=120 \times 2$). The trigonal-bipyramidal set is also open since the process involves only even permutations. (2) The class is represented by two disjoint and isomorphic groups. Enantiomers stand in a one-to-one relationship in these groups. Only one of the groups is displayed in Table III. (3) Neither group possesses the elements c_{E} and $\mathfrak{C}_{\mathrm{E}}$; i.e., racemization cannot occur through this process. There are subcycles of order three and four.
Process 5. (1) The class is closed ($I_{\mathrm{A}} \delta_{\mathrm{A}}=20 \times 6$ and $I_{\mathrm{B}} \delta_{\mathrm{B}}=12 \times 10$) and process permutations are evenodd. (2) Any trigonal-bipyramidal stereoisomer can rearrange to any other stereoisomer in this group in one step.

Process 6. (1) This process is indistinguishable from process 4.

From the standpoint of experimental tests on ML_{5} or an M_{5} aggregate ${ }^{11}$ in which the five vertex atoms are distinguishable, there are certain outstanding distinctions among the various processes: (A) racemization cannot occur via process 4 or 6 , (B) racemization only can occur in process 3, (C) in process 5, one step
(11) E.g., a polyhedral carborane of the type $\operatorname{BHBClB}\left(\mathrm{CH}_{3}\right) \mathrm{CHC}$ $\left(\mathrm{CH}_{3}\right)$.

Table I. ML-Process 1

R^{1}	12	23	34	45	13	14	15	24	25	35	$\overline{1} \overline{2}$	$\overline{2} \overline{3}$	$\overline{34}$	$\overline{45}$	$\overline{13}$	$\overline{14}$	$\overline{15}$	$\overline{24}$	$\overline{25}$	$\overline{35}$
12	E	2	4	4	3	2	3	3	2	1	5	3	1	1	2	3	2	2	3	4
23	2	E	2	4	3	4	1	3	2	3	3	5	3	1	2	1	4	2	3	2
34	4	2	E	2	3	2	1	3	4	3	1	3	5	3	2	3	4	2	1	2
45	4	4	2	E	1	2	3	3	2	3	1	1	3	5	4	3	2	2	3	2
13	3	3	3	1	E	3	2	4	1	2	2	2	2	4	5	2	3	1	4	3
14	2	4	2	2	3	E	3	3	4	1	3	1	3	3	2	5	2	2	1	4
15	3	1	1	3	2	3	E	4	3	2	2	4	4	2	3	2	5	1	2	3
24	3	3	3	3	4	3	4	E	3	4	2	2	2	2	1	2	1	5	2	1
25	2	2	4	2	1	4	3	3	E	3	3	3	1	3	4	1	2	2	5	2
35	1	3	3	3	2	1	2	4	3	E	4	2	2	2	3	4	3	1	2	5
$\overline{12}$	5	3	1	1	2	3	2	2	3	4	E	2	4	4	3	2	3	3	2	1
$\frac{12}{23}$	3	5	3	1	2	1	4	2	3	2	2	E	2	4	3	4	1	3	2	3
34	1	3	5	3	2	3	4	2	1	2	4	2	E	2	3	2	1	3	4	3
$\overline{45}$	1	1	3	5	4	3	2	2	3	2	4	4	2	E	1	2	3	3	2	3
$\overline{1} \overline{3}$	2	2	2	4	5	2	3	1	4	3	3	3	3	1	E	3	2	4	1	2
$\overline{1} \overline{4}$	3	1	3	3	2	5	2	2	1	4	2	4	2	2	3	E	3	3	4	1
$\overline{15}$	2	4	4	2	3	2	5	1	2	3	3	1	1	3	2	3	E	4	3	2
$\underline{24}$	2	2	2	2	1	2	1	5	2	1	3	3	3	3	4	3	4	E	3	4
$\underline{25}$	3	3	1	3	4	1	2	2	5	2	2	2	4	2	1	4	3	3	E	3
$\overline{35}$	4	2	2	2	3	4	3	1	2	5	1	3	3	3	2	1	2	4	3	E

Table II. ML_{5}-- Process 2

R^{2}	12	23	34	45	13	14	15	24	25	35	$\overline{12}$	$\overline{23}$	$\overline{34}$	$\overline{45}$	$\overline{13}$	14	15	24	$\overline{25}$	$\overline{35}$
12	E	2	2	2	1	2	1	1	2	3	3	1	3	3	2	1	2	2	1	2
23	2	E	2	2	1	2	3	1	2	1	1	3	1	3	2	3	2	2	1	2
34	2	2	E	2	1	2	3	1	2	1	3	1	3	1	2	1	2	2	3	2
45	2	2	2	E	3	2	1	1	2	1	3	3	1	3	2	1	2	2	1	2
13	1	1	1	3	E	1	2	2	3	2	2	2	2	2	3	2	1	3	2	1
14	2	2	2	2	1	E	1	1	2	3	1	2	1	1	2	3	2	3	3	2
15	1	3	3	1	2	1	E	2	1	2	2	2	2	2	1	2	3	3	2	1
24	1	1	1	1	2	1	2	E	1	2	2	2	2	2	3	2	3	3	2	3
25	2	2	2	2	3	2	1	1	E	1	1	1	3	1	2	3	2	2	3	2
35	3	1	1	1	2	3	2	2	1	E	2	2	2	2	1	2	1	3	2	3
$\overline{12}$	3	1	3	3	2	1	2	2	1	2	E	2	2	2	1	2	1	1	2	3
23	1	3	1	3	2	2	2	2	1	2	2	E	2	2	1	2	3	1	2	1
$\overline{3} \overline{4}$	3	1	3	1	2	1	2	2	3	2	2	2	E	2	1	2	3	1	2	1
$\overline{45}$	3	3	1	3	2	1	2	2	1	2	2	2	2	E	3	2	1	1	2	1
$\overline{1} \overline{3}$	2	2	2	2	3	2	1	3	2	1	1	1	1	3	E	1	2	2	3	2
$\overline{14}$	1	3	1	1	2	3	2	2	3	2	2	2	2	2	1	E	1	1	2	3
$\overline{15}$	2	2	2	2	1	2	3	3	2	1	1	3	3	1	2	1	E	2	1	2
24	2	2	2	2	3	3	3	3	2	3	1	1	1	1	2	1	2	E	1	2
$\underline{25}$	1	1	3	1	2	3	2	2	3	2	2	2	2	2	3	2	1	1	E	1
35	2	2	2	2	1	2	1	3	2	3	3	1	1	1	2	3	2	2	1	E

Table III. $\mathrm{ML}_{5}-$ Processes 4 and 6

R^{4}, R^{6}	12	25	$\overline{15}$	$\overline{24}$	$\overline{13}$	23	14	$\overline{35}$	45	34
12	E	1	1	1	1	1	1	2	2	2
25	1	E	1	1	2	1	2	1	1	2
15	1	1	E	2	1	2	1	1	1	2
24	1	1	2	E	2	1	1	2	1	1
13	1	2	1	2	E	1	1	1	2	1
23	1	1	2	1	1	E	2	1	2	1
14	1	2	1	1	1	2	E	2	1	1
$\overline{35}$	2	1	1	2	1	1	2	E	,	1
45	2	1	1	1	2	2	1	1	E	1
34	2	2	2	1	1	1	1	1	1	E

suffices to convert any stereoisomer to any other stereoisomer in the trigonal-bipyramidal set.

Further discrimination of greater subtlety may be operationally realized if the molecular aggregate under study isomerizes at a rate that can be followed by nmr. The discrimination would be based on line-shape analysis of the transitional region. Alternative topological representations of process 1 have been published by

Lauterbur and Ramirez, ${ }^{12}$ Dunitz and Prelog, ${ }^{13}$ and Muetterties. ${ }^{2.14}$

The foregoing implicitly assumed that for a given class the rates associated with the unique one-step chains do not vary significantly. If there are gross differences in individual rates, distinguishing features of the individual process may be lost or may be accentuated. Qualitatively, the effect of electronic and steric factors may be anticipated. ${ }^{4}$

Specific Cases: Nonchelate Structures

$\mathbf{M A}_{4} \mathbf{B}$. In trigonal-bipyramidal form, there are two isomers: the unique ligand is either at the axial or equatorial position. The stereochemical classes for processes 1-6 are closed with the exception of the trivial process 3 and isomerization comprises one step.
(12) P. C. Lauterbur and F. Ramirez, J. Am. Chem. Soc., 90, 6722 (1968).
(13) J. D. Dunitz and V. Prelog, Angew. Chem. Intern. Ed. Engl., 7, 725 (1968).
(14) E. L. Muetterties, J. Am. Chem. Soc., 90, 5097 (1968).

PROCESS ONE

PROCESS TWO

$\stackrel{\bullet}{A}$

PROCESS THREE

Figure 2. Topological representations for an $\mathrm{MA}_{2} \mathrm{~B}_{2} \mathrm{C}$ complex or an $\mathrm{M}_{2} \mathrm{M}^{\prime}{ }_{2} \mathrm{M}^{\prime \prime}$ cluster for three distinct rearrangements.
$\mathbf{M A}_{3} \mathbf{B}_{2}$. This case has three isomers: AA, BB, and AB (axial labeling). For process 3, all three isomers are mechanistically isolated, the remaining classes are closed, and the topological representations are

PROCESS ONE

PROCESSES
TWO, FOUR AND SIX

PROCESS FIVE

Thus there are four operationally distinct classes.
$\mathbf{M A}_{2} \mathbf{B}_{2} \mathbf{C}$. This case has six isomers: AA, BB, BC, AC, AB, and $\overline{\mathrm{AB}}$. Topological representations for three classes are given in Figure 2, and group elements are readily discerned therefrom. Through process 5 , any isomer can be converted to any other in one step. Processes 4 and 6 yield isomer connectivities of three, four, and five; representation by a noninterpenetrating three-dimensional figure is not possible. The stereochemical matrix is the same for both processes (Table IV).

Table IV. $\mathrm{MA}_{2} \mathrm{~B}_{2} \mathrm{C}$-Processes 4 and 6

R^{4}, R^{6}	AA	BB	BC	AC	AB	$\overline{\mathrm{AB}}$
AA	E	2	2	1	1	1
BB	2	E	1	2	1	1
BC	2	1	E	1	1	1
AC	1	2	1	E	1	1
AB	1	1	1	1	E	1
$\overline{\mathrm{AB}}$	1	1	1	1	1	E

$\mathbf{M A}_{3} \mathbf{B C}$. There are four stereoisomers: BC, AA, $A C$, and AB. Stereochemical class representations based on a tetrahedron are given in Figure 3, and all elements are evident. In process 3 no isomerization can occur. There are four distinct groups out of the six classes.
$\mathbf{M A}_{2} \mathbf{B C D}$. The ten stereoisomers for this case are $\mathrm{AA}, \mathrm{BC}, \mathrm{BD}, \mathrm{CD}, \mathrm{AD}, \overline{\mathrm{AD}}, \mathrm{AB}, \overline{\mathrm{AB}}, \mathrm{AC}$, and $\overline{\mathrm{AC}}$. Process 3 only allows the interconversion of enantiomers. In process 5 each isomer has a connectivity of nine, and hence any isomerization is minimally one step. Processes 1 and 2 and also the stereochemically identical processes 4 and 6 are most simply represented by Tables V-VII. Process 2 differs from processes 4 and 6 only in the fact that dissymmetric isomers are only five connective, whereas all isomers are six connective in processes 4 and 6.

PROCESS ONE

PROCESS TWO FOUR AND SIX

PROCESS FIVE

Figure 3. Topological representations in the $\mathrm{MA}_{3} \mathrm{BC}$ family.

Chelates

In the following sections, the only limitation placed on each process is that the metal chelate angle not significantly exceed 120° in the intermediate or transition state. Obviously, the severe angle diminution en-

Table V. $\mathrm{MA}_{2} \mathrm{BCD}$-Process 1

R^{1}	AA	BC	BD	DC	AD	$\overline{\mathrm{AD}}$	AB	$\overline{\mathrm{AB}}$	AC	$\overline{\mathrm{AC}}$
AA	E	1	1	1	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$
BC	1	E	2	2	1	1	2	2	2	2
BD	1	2	E	$\mathbf{2}$	$\mathbf{2}$	2	2	2	1	1
DC	1	2	2	E	2	2	1	1	2	2
AD	2	1	2	2	E	2	1	2	2	1
$\overline{\mathrm{AD}}$	2	1	2	2	2	E	2	1	1	2
AB	2	2	2	1	1	2	E	2	2	1
$\overline{\mathrm{AB}}$	2	2	2	1	2	1	2	E	1	2
AC	2	2	1	2	2	1	2	1	E	$\mathbf{2}$
$\overline{\mathrm{AC}}$	2	2	1	2	1	2	1	2	2	E

Table VI. $\mathrm{MA}_{2} \mathrm{BCD}-$ Process 2

R^{2}	AA	BC	BD	DC	AD	$\overline{\mathrm{AD}}$	AB	$\overline{\mathrm{AB}}$	AC	$\overline{\mathrm{AC}}$
AA	E	$\mathbf{2}$	$\mathbf{2}$	2	1	1	1	1	1	1
BC	$\mathbf{2}$	E	1	1	2	2	1	1	1	1
BD	$\mathbf{2}$	1	E	1	1	1	1	1	2	$\mathbf{2}$
DC	$\mathbf{2}$	1	1	E	1	1	2	2	1	1
AD	1	2	1	1	E	$\mathbf{2}$	2	1	1	2
$\overline{\mathrm{AD}}$	1	2	1	1	$\mathbf{2}$	E	1	2	2	1
AB	1	1	1	2	2	1	E	2	1	2
$\overline{\mathrm{AB}}$	1	1	1	2	1	2	2	E	2	1
AC	1	1	2	1	1	2	1	2	E	$\mathbf{2}$
$\overline{\mathrm{AC}}$	1	1	2	1	2	1	2	1	$\mathbf{2}$	E

Table VII. MA $\mathrm{M}_{2} \mathrm{BCD}$-Processes 4 and 6

R^{4}, R^{6}	AA	BC	BD	DC	AD	$\overline{\mathrm{AD}}$	AB	$\overline{\mathrm{AB}}$	AC	$\overline{\mathrm{AC}}$
AA	E	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
BC	$\mathbf{2}$	E	1	1	$\mathbf{2}$	$\mathbf{2}$	1	1	1	1
BD	$\mathbf{2}$	1	E	1	1	1	1	1	$\mathbf{2}$	$\mathbf{2}$
DC	$\mathbf{2}$	1	1	E	1	1	2	$\mathbf{2}$	1	1
AD	1	$\mathbf{2}$	1	1	E	1	1	$\mathbf{2}$	$\mathbf{2}$	1
$\overline{\mathrm{AD}}$	1	$\mathbf{2}$	1	1	1	E	$\mathbf{2}$	$\mathbf{1}$	1	$\mathbf{2}$
AB	1	1	1	$\mathbf{2}$	1	$\mathbf{2}$	E	$\mathbf{1}$	$\mathbf{2}$	1
$\overline{\mathrm{AB}}$	1	1	1	$\mathbf{2}$	$\mathbf{2}$	1	1	E	1	$\mathbf{2}$
AC	1	1	$\mathbf{2}$	1	$\mathbf{2}$	1	$\mathbf{2}$	1	E	1
$\overline{\mathrm{AC}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	1	1	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2}$	1	E

countered in process 5 should greatly elevate the barrier to rearrangement by this route. Ring strain does, in fact, significantly affect barriers to polytopal rearrange-

$\mathrm{M}\left(\mathrm{LL}^{\prime}\right)_{2} \underline{A}$
 UNSYMMETRICAL CHELATE

PROCESS ONE
Figure 4. Planar graph for representation of the group defined by the Berry ${ }^{3}$ process in $\mathrm{M}\left(\mathrm{LL}^{\prime}\right)_{2} \mathrm{~A}$.
ments. ${ }^{4-6,15}$ Ring-strain effects have been discussed previously in the context of process $1.4,6,12$
$\mathbf{M}(L L)_{2} \mathbf{A}$: Symmetric Chelate. The three isomers are LL, $\overline{L L}$, and AL. Topological representations for the six processes are

PROCESSES ONE, FOUR, FIVE AND SIX

PROCESS TWO

PROCESS THREE
$\mathbf{M}\left(L^{\prime}\right)_{2} \mathbf{A}$: Unsymmetric Chelate. Here the ten isomers are $\mathrm{LL}, \overline{\mathrm{LL}}, \mathrm{L}^{\prime} \mathrm{L}^{\prime}, \overline{\mathrm{L}^{\prime}{ }^{\prime}}{ }^{\prime}, \mathrm{LL}^{\prime}, \overline{\mathrm{LL}^{\prime}}, \mathrm{AL}^{\prime}, \overline{\mathrm{AL}}$, AL , and $\overline{\mathrm{AL}}$. In process I all isomers have connectivities of two except L^{\prime} ' and $\overline{L L}$ ' which have connectivi-

Table VIII. $\mathrm{M}\left(\mathrm{LL}^{\prime}\right) \mathrm{A}_{2} \mathrm{~B}$--Process 1

R^{1}	AA	AB	$\overline{\mathrm{AB}}$	BL	BL	AL	$\overline{\mathrm{AL}}$	AL^{\prime}	$\overline{\mathrm{AL}^{\prime}}$
AA	E	3	3	1	1	2	2	2	2
AB	3	E	4	2	2	1	3	3	1
AB	3	4	E	2	2	3	1	1	3
BL	1	2	2	E	2	2	2	1	1
BL	1	2	2	2	E	1	1	2	2
AL	2	1	3	2	1	E	2	3	1
$\overline{\mathrm{AL}}$	2	3	1	2	1	2	E	1	3
AL^{\prime}	2	3	1	1	2	3	1	E	2
AL^{\prime}	2	1	3	1	2	1	3	2	E

Table IX. $\quad \mathrm{M}\left(\mathrm{LL}^{\prime}\right) \mathrm{A}_{2} \mathrm{~B}$--Process 2

R^{2}	AA	AB	$\overline{\mathrm{AB}}$	BL	BL^{\prime}	AL	$\overline{\mathrm{AL}}$	AL^{\prime}	$\overline{\mathrm{AL}^{\prime}}$
AA	E	1	1	2	2	1	1	1	1
AB	1	E	2	1	1	2	1	1	2
$\overline{\mathrm{AB}}$	1	2	E	1	1	1	2	2	1
BL	2	1	1	E	1	1	1	2	2
BL		2	1	1	1	E	2	2	1
1									
AL	1	2	1	1	2	E	2	1	2
$\overline{\mathrm{AL}}$	1	1	2	1	2	2	E	2	1
AL^{\prime}	1	1	2	2	1	1	2	E	2
$\overline{\mathrm{AL}}^{\prime}$	1	2	1	2	1	2	1	2	E

(15) E. L. Muetterties, W. Mahler, and R. S. Schmutzler, Inorg. Chem., 2, 613 (1963).

$M\left(L L^{\prime}\right)_{2} A$

UNSYMMETRICAL CHELATE

PROCESS TWO
Figure 5. Representation of the group defined by process 2 in M(LL') ${ }_{2} \mathrm{~A}$.

Figure 6. Topological representations for the $M(L L) A_{2} B$ family.
ties of three. The simplest representation is the planar graph illustrated in Figure 4. In process 3 only interconversion of enantiomers is possible. Process 2 is topologically illustrated in Figure 5. Processes 4 and

Table X. M(LL')A $\mathrm{A}_{2} \mathrm{~B}$-Process 4

R^{4}	AA	AB	$\overline{\mathrm{AB}}$	BL	BL^{\prime}	AL	$\overline{\mathrm{AL}}$	AL^{\prime}
AL^{\prime}								
AA	E	2	2	2	2	1	1	1
AB	2	E	2	1	1	1	2	2
AB	2	2	E	1	1	2	1	1
$\mathbf{B L}$	2	1	1	E	1	1	1	2
2								
BL		2	1	1	1	E	2	2
1	1							
AL	1	1	2	1	2	E	1	2
$\overline{\mathrm{AL}}$	1	2	1	1	2	1	E	1
2								
AL^{\prime}	1	2	1	2	1	2	1	E
$\overline{\mathrm{AL}}^{\prime}$	1	1	2	2	1	1	2	1

6 are identical and define two disjoint and isomorphic groups. A topological representation of one of these groups is illustrated below.

In process 5, the isomer connectivities are nine and all isomerizations are minimally one step.

Table XI. M(LL') $\mathrm{A}_{2} \mathrm{~B}$--Process 5

R^{5}	AA	$A B$	$\overline{\mathrm{AB}}$	BL	BL'	AL	$\overline{\mathrm{AL}}$		$\overline{\overline{\mathrm{AL}^{\prime}}}$
AA	E	2	2	1	1	1	1	1	1
AB	2	E	1	1	1	1	1	1	1
$\overline{\mathrm{AB}}$	2	1	E	1	1	1	1	1	1
BL	1	1	1	E	1	1	1	1	1
BL'	1	1	1	1	E	1	1	1	1
AL	1	1	1	1	1	E	1	1	1
$\overline{\mathrm{AL}}$	1	1	,	1	1	1	E	1	1
AL^{\prime}	1	1	1	1	1	1		E	1
$\overline{\mathrm{AL}^{\prime}}$	1	1	1	,	1	1	1		E

Table XII. $\mathrm{M}\left(\mathrm{LL}^{\prime}\right) \mathrm{A}_{2} \mathrm{~B}$--Process 6

R^{6}	AA	AB	$\overline{\mathrm{AB}}$	BL	BL^{\prime}	AL	$\overline{\mathrm{AL}}$	AL^{\prime}	$\overline{\mathrm{AL}}$
AA	E	1	1	2	2	1	1	1	1
AB	1	E	1	1	1	1	2	2	1
$\overline{\mathrm{AB}}$	1	1	E	1	1	2	1	1	2
BL	2	1	1	E	1	1	1	2	2
BL^{\prime}		2	1	1	1	E	2	2	1
AL	1	1	2	1	2	E	1	2	1
$\overline{\mathrm{AL}}$	1	2	1	1	2	1	E	1	2
AL		1	2	1	2	1	2	1	E
$\overline{\mathrm{AL}^{\prime}}$	1	1	1	2	2	1	1	2	1

Table XIII. M(LL)ABC-Process 1

R^{1}	AC	BC	AB	CL	$\overline{\mathrm{CL}}$	BL	$\overline{\mathrm{BL}}$	AL	$\overline{\mathrm{AL}}$
AC	E	3	3	2	2	1	1	2	2
BC	3	E	3	2	2	2	2	1	1
AB	3	3	E	1	1	2	2	2	2
CL	2	2	1	E	2	3	1	1	3
$\overline{\mathrm{CL}}$	2	2	1	2	E	1	3	3	1
BL	1	2	2	3	1	E	2	3	1
$\overline{\mathrm{BL}}$	1	2	2	1	3	2	E	1	3
AL	2	1	2	1	3	3	1	E	2
$\overline{\mathrm{AL}}$	2	1	2	3	1	1	3	2	E

Table XIV. M(LL)ABC-Process 2

R^{2}	AC	BC	AB	CL	$\overline{\overline{C L}}$	BL	$\overline{\mathrm{BL}}$	AL	$\overline{\mathrm{AL}}$
AC	E	1	1	1	1	$\mathbf{2}$	$\mathbf{2}$	1	1
BC	1	E	1	1	1	1	1	2	2
AB	1	1	E	2	2	1	1	1	1
CL	1	1	2	E	2	1	2	2	1
$\overline{\mathrm{CL}}$	1	1	2	2	E	2	1	1	2
BL	2	1	1	1	2	E	2	1	2
$\overline{\mathrm{BL}}$	2	1	1	2	1	2	E	2	1
AL	1	2	1	2	1	1	2	E	2
$\overline{\mathrm{AL}}$	1	2	1	1	2	2	1	2	E

$\mathbf{M}(L L) \mathbf{A}_{3}$ and $\mathbf{M}\left(L^{\prime}\right) \mathbf{A}_{3}$. For the symmetric chelate, there are two stereoisomers, AA and AL. Process 3 does not allow for isomerization, and all other processes

Table XV. M(LL)ABC-Process 4

R^{4}	AC	BC	AB	CL	$\overline{\mathrm{CL}}$	BL	$\overline{\mathrm{BL}}$	AL	$\overline{\mathrm{AL}}$
AC	E	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{2}$	1	1
BC	$\mathbf{2}$	E	$\mathbf{2}$	1	1	1	1	2	2
AB	$\mathbf{2}$	2	E	2	2	1	1	1	1
CL	1	1	2	E	1	$\mathbf{2}$	1	1	2
$\overline{\mathrm{CL}}$	1	1	2	1	E	1	$\mathbf{2}$	$\mathbf{2}$	1
BL	2	1	1	2	1	E	1	2	1
$\overline{\mathrm{BL}}$	$\mathbf{2}$	1	1	1	2	1	E	1	2
AL	1	2	1	1	2	2	1	E	1
$\overline{\mathrm{AL}}$	1	$\mathbf{2}$	1	2	1	1	$\mathbf{2}$	1	E

Table XVI. M(LL)ABC-Process 5

R^{5}	AC	BC	AB	CL	$\overline{\mathrm{CL}}$	BL	$\overline{\mathrm{BL}}$	AL	$\overline{\mathrm{AL}}$
AC	E	$\mathbf{2}$	$\mathbf{2}$	1	1	1	1	1	1
BC	$\mathbf{2}$	E	$\mathbf{2}$	1	1	1	1	1	1
AB	$\mathbf{2}$	$\mathbf{2}$	E	1	1	1	1	1	1
CL	1	1	1	E	1	1	1	1	1
$\overline{\mathrm{CL}}$	1	1	1	1	E	1	1	1	1
BL	1	1	1	1	1	E	1	1	1
$\overline{\mathrm{BL}}$	1	1	1	1	1	1	E	1	1
AL	1	1	1	1	1	1	1	E	1
$\overline{\mathrm{AL}}$	1	1	1	1	1	1	1	1	E

Table XVII. M(LL)ABC-Process 6

R^{6}	AC	BC	AB	CL	$\overline{\mathrm{CL}}$	BL	$\overline{\mathrm{BL}}$	AL	$\overline{\mathrm{AL}}$
AC	E	1	1	1	1	2	2	1	1
BC	1	E	1	1	1	1	1	2	2
AB	1	1	E	2	2	1	1	1	1
CL	1	1	2	E	1	2	1	1	2
$\overline{\mathrm{CL}}$	1	1	2	1	E	1	2	2	1
BL	2	1	1	2	1	E	1	2	1
$\overline{\mathrm{BL}}$	2	1	1	1	2	1	E	1	2
AL	1	2	1	1	2	2	1	E	1
$\overline{\mathrm{AL}}$	1	2	1	2	1	1	2	1	E

comprise closed classes with minimal one-step isomerization. With the unsymmetrical chelate, there are three stereoisomers, AA, AL, and AL^{\prime}. The topological representation for all but process 3 is

In process 3 , all isomers are isolated; no isomerization can occur.
$\mathbf{M}(\mathrm{LL}) \mathbf{A}_{2} \mathbf{B}$: Symmetric Chelate. The five stereoisomers are $\mathrm{AA}, \mathrm{AB}, \mathrm{BL}, \mathrm{AL}$, and $\overline{\mathrm{AL}}$. Topological representations for these processes are given in Figure 6. In process 3, the only step that can take place is interconversion of enantiomers ($\mathrm{AL} \rightleftharpoons \overline{\mathrm{AL}}$).
$\mathbf{M}\left(L^{\prime}{ }^{\prime}\right) \mathbf{A}_{2} \mathbf{B}$: Unsymmetric Chelate. The nine stereoisomers are $\mathrm{AA}, \mathrm{AB}, \overline{\mathrm{AB}}, \mathrm{BL}, \mathrm{BL}^{\prime}, \mathrm{AL}, \overline{\mathrm{AL}}, \mathrm{AL}^{\prime}$, and $\overline{\mathrm{AL}^{\prime}}$. Process 3 is again the most simply structured; enantiomer interconversions are the only allowed steps. The remaining processes are relatively complicated; many have isomers of high connectivity. Although

Table XVIII. M(LL')ABC--Process 1

R^{1}	AC	$\stackrel{\text { AC }}{ }$	BC	$\stackrel{\rightharpoonup}{\mathrm{BC}}$	AB	$\overline{\mathrm{AB}}$	CL	$\overline{\mathrm{CL}}$	CL'	$\overline{\mathrm{CL}^{\prime}}$	BL	$\overline{\mathrm{BL}}$	BL'	$\overline{\mathrm{BL}}{ }^{\prime}$	AL	$\overline{\mathrm{AL}}$	AL'	$\overline{\mathrm{AL}}^{\prime}$
AC	E	5	3	4	3	4	3	2	2	3	4	1	1	4	3	2	2	3
$\overline{\mathrm{AC}}$	5	E	4	3	4	3	2	3	3	2	1	4	4	1	2	3	3	2
BC	3	4	E	5	4	3	2	3	3	2	3	2	2	3	4	1	1	4
$\overline{\mathrm{BC}}$	4	3	5	E	3	4	3	2	2	3	2	3	3	2	1	4	4	1
AB	3	4	4	3	E	5	4	1	1	4	3	2	2	3	2	3	3	2
$\overline{\mathrm{AB}}$	4	3	3	4	5	E	1	4	4	1	2	3	3	2	3	2	2	3
CL	3	2	2	3	4	1	E	5	3	2	3	2	4	1	2	3	1	4
$\overline{\mathrm{CL}}$	2	3	3	2	1	4	5	E	2	3	2	3	1	4	3	2	4	1
CL'	2	3	3	2	1	4	3	2	E	5	4	1	3	2	1	4	2	3
$\overline{\mathrm{CL}}{ }^{\prime}$	3	2	2	3	4	1	2	3	5	E	1	4	2	3	4	1	3	2
BL	4	1	3	2	3	2	3	2	4	1	E	5	3	2	3	2	4	1
$\overline{\mathrm{BL}}$	1	4	2	3	2	3	2	3	1	4	5	E	2	3	2	3	1	4
BL'	1	4	2	3	2	3	4	1	3	2	3	2	E	5	4	1	3	2
$\overline{\mathrm{BL}^{\prime}}$	4	1	3	2	3	2	1	4	2	3	2	3	5	E	1	4	2	3
AL	3	2	4	1	2	3	2	3	1	4	3	2	4	1	E	5	3	2
$\overline{\mathrm{AL}}$	2	3	1	4	3	2	3	2	4	1	2	3	1	4	5	E	2	3
AL^{\prime}	2	3	1	4	3	2	1	4	2	3	4	1	3	2	3	2	E	5
$\overline{\mathrm{AL}^{\prime}}$	3	2	4	1	2	3	4	1	3	2	1	4	2	3	2	3	5	E

Table XIX. M(LL')ABC--Process 2

R^{2}	AC	$\overline{\mathrm{AC}}$	BC	$\overline{\mathrm{BC}}$	AB	$\overline{\mathrm{AB}}$	CL	$\overline{\mathrm{CL}}$	CL^{\prime}	$\overline{\mathrm{CL}^{\prime}}$	BL	$\overline{\mathrm{BL}}$	BL'	$\overline{\mathrm{BL}^{\prime}}$	AL	$\overline{\mathrm{AL}}$	AL^{\prime}	$\overline{\mathrm{AL}^{\prime}}$
AC	E	3	3	2	3	2	1	2	2	1	2	2	3	2	1	2	2	1
$\overline{\mathrm{AC}}$	3	E	2	3	2	3	2	1	1	2	2	2	2	3	2	1	1	2
BC	3	2	E	3	2	3	2	1	1	2	1	2	2	1	2	2	3	2
$\overline{\mathrm{BC}}$	2	3	3	E	3	2	1	2	2	1	2	1	1	2	2	2	2	3
AB	3	2	2	3	E	3	2	3	3	2	1	2	2	1	2	1	1	2
$\overline{\mathrm{AB}}$	2	3	3	2	3	E	3	2	2	3	2	1	1	2	1	2	2	1
CL	1	2	2	1	2	3	E	1	3	2	1	2	2	3	2	1	3	2
$\overline{\mathrm{CL}}$	2	1	1	2	3	2	1	E	2	3	2	1	3	2	1	2	2	3
CL'	2	1	1	2	3	2	3	2	E	1	2	3	1	2	3	2	2	1
$\overline{\mathrm{CL}^{\prime}}$	1	2	2	1	2	3	2	3	1	E	3	2	2	1	2	3	1	2
BL	2	2	1	2	1	2	1	2	2	3	E	1	3	2	1	2	2	3
$\overline{\mathrm{BL}}$	2	2	2	1	2	1	2	1	3	2	1	E	2	3	2	1	3	2
BL'	3	2	2	1	2	1	2	3	1	2	3	2	E	1	2	3	1	2
$\overline{\mathrm{BL}^{\prime}}$	2	3	1	2	1	2	3	2	2	1	2	3	1	E	3	2	2	1
AL	1	2	2	2	2	1	2	1	3	2	1	2	2	3	E	1	3	2
$\overline{\mathrm{AL}}$	2	1	2	2	1	2	1	2	2	3	2	1	3	2	1	E	2	3
${ }^{\text {AL }}{ }^{\prime}$	2	1	3	2	1	2	3	2	2	1	2	3	1	2	3	2	E	1
$\overline{\mathrm{AL}^{\prime}}$	1	2	2	3	2	1	2	3	1	2	3	2	2	1	2	3	1	E

Table XX. M(LL')ABC—Process 5

R^{5}	AC	$\overline{\mathrm{AC}}$	BC	$\overline{\mathrm{BC}}$	AB	$\overline{\mathrm{AB}}$	CL	$\overline{\mathrm{CL}}$	CL'	$\overline{\mathrm{CL}}{ }^{\prime}$	BL	$\overline{\text { BL }}$	BL ${ }^{\prime}$	$\overline{\mathrm{BL}^{\prime}}$	AL	$\overline{\text { AL }}$	AL^{\prime}	$\overline{\mathrm{AL}^{\prime}}$
AC	E	1	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
$\overline{\mathrm{AC}}$	1	E	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
BC	2	2	E	1	2	2	1	1	1	1	1	1	1	1	1	1	1	1
$\overline{\mathrm{BC}}$	2	2	1	E	2	2	1	1	1	1	1	1	1	1	1	1	1	1
AB	2	2	2	2	E	1	1	1	1	1	1	1	1	1	1	1	1	1
$\overline{\mathrm{AB}}$	2	2	2	2	1	E	1	1	1	1	1	1	1	1	1	1	1	1
CL	1	1	1	1	1	1	E	1	1	1	1	1	1	1	1	1	1	1
$\overline{\mathrm{CL}}$	1	1	1	1	1	1	1	E	1	1	1	1	1	1	1	1	1	1
CL^{\prime}	1	1	1	1	1	1	1	1	E	1	1	1	1	1	1	1		1
$\overline{\mathrm{CL}}{ }^{\prime}$	1	1	1	1	1	1	1	1	1	E	1	1	1	1	1	1	1	1
BL	1	1	1	1	1	1	1	1	1	1	E	1	1	1	1	1	1	1
$\overline{\mathrm{BL}}$	1	1	1	1	1	1	1	1	1	1	1	E	1	1	1	1	1	1
BL'	1	1	1	1	1	1	1	1	1	1	1	1	E	1	1	1	1	1
$\overline{\mathrm{BL}}{ }^{\prime}$	1	1	1	1	1	1	1	1	1	1	1	1	1	E	1	1	1	1
AL	1	1	1	1	1	1	1	1	1	1	1	1	1	1	E	1	1	1
$\overline{\mathrm{AL}}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	E	1	1
AL'	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	E	1
$\overline{\mathrm{AL}}^{\prime}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	E

geometrical representations are feasible for some, all five are described by the matrices in Tables VII-XII. All classes are distinct.

M(LL)ABC: Symmetric Chelate. The nine stereoisomers are $\mathrm{AC}, \mathrm{BC}, \mathrm{AB}, \mathrm{CL}, \overline{\mathrm{CL}}, \mathrm{BL}, \overline{\mathrm{BL}}, \mathrm{AL}$, and $\overline{\mathrm{AL}}$. For process 3 only racemization can occur. The
other processes yield distinct groups. The matrix representations are given in Tables XIII-XVII.

M(LL')ABC: Unsymmetric Chelate. There are 18 isomers for this case. Process 3 yields an open class wherein only racemization occurs. Processes 4 and 6 each define disjoint groups (enantiomeric in a labeling

Table XXI. M(LL')ABC--Process 4

R^{4}	AC	$\stackrel{\square}{\mathrm{BC}}$	$\overline{\mathrm{AB}}$	CL	CL'	BL	$\overline{\mathrm{BL}}{ }^{\prime}$	$\overline{\mathrm{AL}}$	AL^{\prime}
AC	E	2	2	1	1	2	2	1	1
$\overline{\mathrm{BC}}$	2	E	2	1	1	1	1	2	2
$\overline{\mathrm{AB}}$	2	2	E	2	2	1	1	1	1
$\overline{\mathrm{CL}}$	1	1	2	E	1	1	2	1	2
CL'	1	1	2	1	E	2	1	2	1
BL	2	1	1	1	2	E	1	1	2
$\overline{\mathrm{BL}^{\prime}}$	2	1	1	2	1	1	E	2	1
$\overline{\mathrm{AL}}$	1	2	1	1	2	1	2	E	1
AL^{\prime}	1	2	1	2	1	2	1	1	E

context). The chain c_{E} is not an element of these groups; racemization cannot occur.

Stereochemical matrices are presented in Tables

Table XXII. M(LL')ABC-Process 6

R^{6}	AC	$\overline{\mathrm{BC}}$	$\overline{\mathrm{AB}}$	$\overline{\mathrm{CL}}$	CL^{\prime}	BL	$\overline{\mathrm{BL}^{\prime}}$	$\overline{\mathrm{AL}}$	AL^{\prime}
AC	E	1	1	1	1	2	2	1	1
$\overline{\mathrm{BC}}$	1	E	1	1	1	1	1	2	2
$\overline{\mathrm{AB}}$	1	1	E	2	2	1	1	1	1
$\overline{\mathrm{CL}}$	1	1	2	E	1	1	2	1	2
CL	1	1	2	1	E	2	1	2	1
BL	2	1	1	1	2	E	1	1	2
$\overline{\mathrm{BL}}$		2	1	1	2	1	1	E	2
$\overline{\mathrm{AL}}$	1	2	1	1	2	1	2	E	1
AL		1	2	1	2	1	2	1	1

XVIII-XXII. In processes 4 and 6 , only one of the isomorphic groups is tabulated. All classes are distinct.

The Thermal Polymerization of Diphosphine-4

R. B. Callen ${ }^{1}$ and T. P. Fehlner
Contribution from the Department of Chemistry and Radiation Laboratory, ${ }^{2}$ University of Notre Dame, Notre Dame, Indiana 46556. Received February 10, 1969

Abstract

The pyrolysis of diphosphine-4 has been examined in static reactors over the temperature range 300$830^{\circ} \mathrm{K}$ and reactant pressure range $0.5-10$ Torr. Both the loss of diphosphine- 4 and the formation of phosphine were observed as a function of time. At the lower temperatures, the formation and subsequent decay of triphos-phine- 5 was measured, while at the higher temperatures tetraatomic phosphorus was a minor product. The overall reaction is controlled by the nature of the surface, but the role of the surface is not simply to provide catalytic sites. It has been shown by labeling studies that the solid formed on the surface during the reaction is a labile hydride and that this hydride reacts directly with diphosphine-4. In addition, there appears to be a dynamic equilibrium set up between the gas-phase hydrides and the polymeric surface hydride. The entire complex reaction may be explained in terms of two simple generalized reactions.

We have published recently a number of reports on the existence and nature of several hydrides of phosphorus. ${ }^{3.4}$ The major part of this work was directed toward identifying and characterizing new hydrides. Pyrolysis of diphosphine-4 at low pressures yielded evidence for diphosphine $-2,{ }^{3 a}$ a species that was characterized mass spectrometrically. ${ }^{4}$ Triphosphine-5 was observed ${ }^{3 b}$ and, as it was later isolated in the pure state, was characterized more thoroughly. ${ }^{3 \mathrm{~d}, \mathrm{e}}$ Information on the energetics of these species, obtained mainly by the mass spectrometric method, strongly suggests that the characteristic instability of these hydrides is not due to very weak phosphorus-phosphorus bonds. Rather, the difficulty in isolating higher hydrides of phosphorus lies in the extremely facile condensation reaction which they undergo. This is a particularly rapid reaction in the Iiquid phase. Consequently, the most characteristic feature of the hydrides

[^2]with phosphorus-phosphorus bonds is this facile reaction which produces solid hydrides of variable stoichiometry and phosphine. ${ }^{5}$ An understanding of this reaction, then, is most pertinent to an understanding of the nature of the phosphorus hydrides.

There were several secondary objectives of this work also. First, we were interested in defining the role of triphosphine 5 as an intermediate in the production and growth of the solid polymeric hydride. Secondly, we wished to test, if possible, the usefulness of the lowpressure pyrolysis technique ${ }^{3 c, d}$ in making general mechanistic conclusions. Finally, we hoped a kinetic
(5) A measurement of the molecular weight of this solid in molten red phosphorus yielded a formula of $\mathrm{P}_{12} \mathrm{H}_{6}$ as reported by R . Schenk and E. Buck, Chem. Ber., 37, 915 (1904). They suggested that the solid was a low molecular weight polymer. A solid hydride with an empirical formula $\mathrm{P}_{9} \mathrm{H}_{2}$ formed by heating $\mathrm{P}_{2} \mathrm{H}$ was reported by A. Stock, et al., ibid., 42, 2839, 2847 (1909). It was later proposed that the solid, previously characterized as $P_{2} H$, was an adsorption complex of diphos-phine-4 on a solid with the formula $\mathrm{P}_{5} \mathrm{H}_{2}$ (L. Hackspill, Compt. Rend., 156, 146 (1913)). Twenty years later, it was postulated that all solid hydrides were "adsorbates" of phosphine on a yellow modification of phosphorus (P. Royen and K. Hill, Z. Anorg. Allg. Chem., 229, 97, 112 (1936)). Support for this hypothesis resulted from the report by P. Royen, ibid., 229, 369 (1936), that the yellow solids were amorphous to X-rays. A reexamination of the thermal decomposition of diphosphine4 has been reported by E. Evers and E. Street, J. Amer. Chem. Soc., 78, 5726 (1956). Their data indicate that a solid roughly of composition $\mathrm{P}_{9} \mathrm{H}_{4}$ is produced. They conclude that the yellow solids are not "adsorbates" of phosphine on phosphorus and that solids of practically any composition can be produced depending on the conditions.

[^0]: (1) Part I: E. L. Muetterties, J. Am. Chem. Soc., 91, 1636 (1969).
 (2) E. L. Muetterties and A. T. Storr, ibid., 91, 3098 (1969).

[^1]: (8) E. Teller and J. A. Wheeler, Phys. Rev., 53, 778 (1938), noted the close relationship of the trigonal bipyramid and square pyramid in a consideration of exchange of nuclear constituents through rotation.
 (9) W. Mahler and E. L. Muetterties, Inorg. Chem., 4, 1520 (1965).
 (10) G. M. Whitesides and W. M. Bunting, J. Am. Chem. Soc., 89, 6801 (1967).

[^2]: (1) Abstracted from the Ph.D. Thesis of R. B. Callen, University of Notre Dame, 1968.
 (2) The Radiation Laboratory is operated by the University of Notre Dame under contract with the Atomic Energy Commission. This is AEC Document No. COO-38-657.
 (3) (a) T. P. Fehlner, J. Amer. Chem. Soc., 88, 1819 (1966); (b) ibid., 88, 2613 (1966); (c) ibid., 89, 6477 (1967); (d) ibid., 90, 4817 (1968); (e) ibid., 90, 6062 (1968).
 (4) T. P. Fehlner and R. B. Callen, Advances in Chemistry Series, No. 72, American Chemical Society, Washington, D. C., 1968, pp 181190.

